

Acid Base Tutorial

CREATED BY SCHWEITZER

BASICS OF ACIDS

ALL ACIDS HAVE AN "H" IN THE FRONT OF THEIR FORMULA...HCI....HF....HNO₃

- ALL ACIDS WILL NEED TO BE IN WATER
- AQUEOUS (aq)

ACIDIC NOMENCLATURE

OXYACIDS

- CONTAIN OXYGEN
- FOLLOW PATTERN
 - HX WHERE "X" IS A POLYATOMIC ANION
 - EXAMPLES: HNO₃ or H₃PO₄
- [root of polyatomic + "ic" or "ous" + acid]
 - In order to indicate which polyatomic ion
 - "ic" stands for the "ate" version
 - "ous" stands for the "ite" version

ACIDIC NOMENCLATURE

- NON-OXYACIDS
 - DO NOT CONTAIN OXYGEN
 - FOLLOW PATTERN "HX"
 - "X" = Monatomic ion
 - HF_(aq) Hydrofluoric acid
 - [hydro + root of "x" + ic + acid]

How many Hydrogens??

■ HYDROGENS WILL BALANCE OVERALL CHARGE TO ZERO.... ($PO_4^{-3} \rightarrow H_3PO_4$)

Practice Naming acids

- H_2SO_4 (aq)
- HBr_(aq)
- HIO_{2 (aq)}
- HI_(aq)

Practice Naming acids

- H₂SO₄ Sulfuric acid
- HBr Hydrobromic acid

HIO₂ lodous Acid

HI(aq) Hydrolodic acid

PROPERTIES OF BASES

- BASES
 - BITTER TASTE
 - SLIPPERY TO TOUCH
 - CORROSIVE
 - DISSOLVE BIOLOGICAL MATERIALS(Caustic)
 - ALKALINE (ANOTHER NAME)

Properties of Acids

- ACIDS
 - SOUR
 - RXN WITH METAL FORMING H₂ GAS
 - CONDUCT ELECTRICITY
 - CORROSIVE
 - pH (7 ↔ 0)

What makes something Acidic?

- Anything that can produce H+ ions
- \blacksquare (H⁺ or H₃O⁺ = hydronium ion)
 - Or consume OH⁻

What makes something Basic?

Anything that can produce OH ions

Or consume H₃O+ ions

Arrhenius Acid/Base Definition

- Acids contain H and produce H₃O⁺ ions
- Bases contain OH⁻ produce OH⁻
- Example
 - $HCI + H_2O \rightarrow H_3O^+ + CI^-$
 - $NaOH_{(s)} + H_2O \rightarrow Na^+_{(aq)} + OH^-_{(aq)}$

Svante Arrhenius

Svante Arrhenius

Svante August Arrhenius was born on February 19, 1859.

Problems with Arrhenius

■ NH₃ is Basic.

According to Arrhenius all bases must contain OH⁻

So a new definition was needed!

Bronsted-Lowery Acid base Definition.

- Acid: Proton donor (H+donor)
- Base: Proton Acceptor (H+ acceptor)

What does this mean?

- Every acid base reaction is simply an exchange of an H+
- So every reaction contains an acid and every reaction contains a base.

- $\blacksquare NH_4^+ + H_2O => NH_3 + H_3O^+$
- Who is the acid? Who is the base?

CONJUGATE

- CONJUGATE: SUBSTANCE AFTER H+ HAD BEEN DONATED OR ACCEPTED??
- ESSENTIALLY SAME ELEMENT...EXCEPT FOR H+
- NOTICE: ANY ACID BECOMES A BASE (VISE-VERSA)
- **EXAMPLE:**

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$
 AND $NH_4^+(aq) + OH^-(aq) \rightleftharpoons NH_3(aq) + H_2O(l)$ base acid base conj conj acid base acid

Pick out the acid and the base.

■ $HCI + F^- \rightarrow CI^- + HF$

 ${\color{red} \blacksquare CO_3^{-2} + 2HI \rightarrow H_2CO_3 + 2I^-}$

Determine the Conjugates

HCN +
$$H_2O \rightarrow H_3O^+ + CN^-$$

Acid Base conj. Conj.
acid base
NH₃ + $H_2O \rightarrow NH_4^+ + OH^-$
Base acid conj. Conj.

AP Question

Consider the three acids: HF, HSO₄-, and H₂PO₄-

Which list includes only conjugate bases of the acids given above?

- a. $OH_1^-HPO_4^{3-}$ and H_3O^+
- b. $F_{1}^{-}SO_{4}^{2-}$ and HPO_{4}^{2-}
- c. OH^{-} , SO_4^{2-} , and PO_4^{3-}
- d. OH^{-} , SO_{4}^{2-} , and HPO_{4}^{2-}
- e. H₂F+, H₂SO₄, and H₃PO₄

Amphiprotic

Substance which can act like an acid or a base.

HCN +
$$H_2O \rightarrow H_3O^+ + CN^-$$

Acid Base conj. Conj.
acid base
NH₃ + $H_2O \rightarrow NH_4^+ + OH^-$
Base acid conj. Conj.
acid base

AP Question

Each list contains at least one species that could illustrate amphoteric behavior Except:

- a. HNO₃, HCI, HS⁻¹
- b. CO₃²⁻, Br-, NH₄+
- c. HCO₃-, HSO₄-, NH₃
- d. H₂PO₄-, NH₂-, ClO₃-
- e. H_3PO_3 , $AI(OH)_3$, $Zn(OH)_2$

How many protons can an acid donate?

- Polyprotic
- Diprotic
- Monoprotic

These terms describe the number of protons that can be donated.

AP Question

Which of the following is the best description of the changes that occur in each molecule of H₃PO₄ when H₃PO₄ is neutralized in water solution to form PO₄³-

- a. Three electrons are accepted
- b. Three protons are transferred
- c. The oxidation number of phosphorus decreases by three units.
- d. Three protons are transferred and three electrons are accepted.
- e. Three protons are transferred and the oxidation number of phosphorus decreases by three units.

AP Question

- Which is a polyprotic acid in water?
- I. Ca(NO₃)₂
- II. Na₂HPO₄
- III. H₃AsO₄
- a. I only
 d. I and II only
- b. III only e. I, II, and III
- c. II and III only

Common Acid Base Conjugates

- Ammonia: NH₃
- Ammonium: NH₄+

- This is a common acid/base pair. complete the following reaction.
- NH_3 + strong acid $\rightarrow NH_4$ +
- NH₄+ + Strong base → NH₃