2
 Acid Base Tutorial

CREATED BY
SCHWEITZER

BASICS OF ACIDS

- ALL ACIDS HAVE AN "H" IN THE FRONT OF THEIR FORMULA...HCI....HF.... HNO_{3}
- ALL ACIDS WILL NEED TO BE IN WATER

ACIDIC NOMENCLATURE

- OXYACIDS
- CONTAIN OXYGEN
- FOLLOW PATTERN
- HX WHERE "X" IS A POLYATOMIC ANION
- EXAMPLES: HNO_{3} or $\mathrm{H}_{3} \mathrm{PO}_{4}$
- [root of polyatomic + "ic" or "ous" + acid]
- In order to indicate which polyatomic ion
- "ic" stands for the "ate" version
- "ous" stands for the "ite" version

ACIDIC NOMENCLATURE

- NON-OXYACIDS
- DO NOT CONTAIN OXYGEN
- FOLLOW PATTERN "HX"
- "X" = Monatomic ion
- $\mathrm{HF}_{(\mathrm{aq})}$ Hydrofluoric acid
- [hydro + root of "x" + ic + acid]

How many Hydrogens ??

- HYDROGENS WILL BALANCE OVERALL CHARGE TO ZERO.... $\left(\mathrm{PO}_{4}^{-3} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}\right)$

Practice Naming acids

$-\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
$-\mathrm{HBr}_{(\mathrm{aq})}$
$-\mathrm{HIO}_{2}(\mathrm{aq})$
$-\mathrm{HI}_{(\mathrm{aq})}$

Practice Naming acids

- $\mathrm{H}_{2} \mathrm{SO}_{4}$ Sulfuric acid
- HBr Hydrobromic acid
- HIO_{2} lodous Acid
- HI(aq) Hydrolodic acid

PROPERTIES OF BASES

-BASES

- BITTER TASTE
- SLIPPERY TO TOUCH
- CORROSIVE
- DISSOLVE BIOLOGICAL MATERIALS(Caustic)
- ALKALINE (ANOTHER NAME)

Properties of Acids

- ACIDS
- SOUR
- RXN WITH METAL FORMING H2 GAS
- CONDUCT ELECTRICITY
- CORROSIVE
- $\mathrm{pH}(7 \leftrightarrow 0)$

What makes something Acidic?

- Anything that can produce $\mathrm{H}+$ ions
- (H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}=$hydronium ion)
- Or consume OH^{-}

What makes something Basic?

- Anything that can produce OH^{-}ions
- Or consume $\mathrm{H}_{3} \mathrm{O}^{+}$ions

Arrhenius Acid/Base Definition

- Acids contain H and produce $\mathrm{H}_{3} \mathrm{O}^{+}$ions
- Bases contain OH produce OH^{-}
- Example
$-\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
- $\mathrm{NaOH}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}$

Svante Arrhenius

- Svante Arrhenius

Svante August Arrhenius was born on February 19, 1859.

Problems with Arrhenius

$-\mathrm{NH}_{3}$ is Basic.

- According to Arrhenius all bases must contain OH^{-}
- So a new definition was needed!

Bronsted-Lowery Acid base Definition.

- Acid: Proton donor (H^{+}donor)
- Base: Proton Acceptor (H^{+}acceptor)

What does this mean?

- Every acid base reaction is simply an exchange of an H^{+}
- So every reaction contains an acid and every reaction contains a base.
$-\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
- Who is the acid? Who is the base?

CONJUGATE

- CONJUGATE: SUBSTANCE AFTER H+ HAD BEEN DONATED OR ACCEPTED??
- ESSENTIALLY SAME ELEMENT...EXCEPT FOR H+
- NOTICE: ANY ACID BECOMES A BASE (VISE-VERSA) EXAMPLE:

Pick out the acid and the base.

$\square \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\square \mathrm{HCl}+\mathrm{F}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{HF}$
$-\mathrm{CO}_{3}^{-2}+2 \mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{I}^{-}$

Determine the Conjugates

$\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$
Acid Base conj. Conj. acid base
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

Base acid conj.	Conj.	
	acid	base

AP Question

Consider the three acids: $\mathrm{HF}, \mathrm{HSO}_{4}^{-}$, and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
Which list includes only conjugate bases of the acids given above?
a. $\mathrm{OH}^{-}, \mathrm{HPO}_{4}{ }^{3-}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
b. $\mathrm{F}^{-} \mathrm{SO}_{4}{ }^{2-}$, and $\mathrm{HPO}_{4}{ }^{2-}$
c. $\mathrm{OH}^{-}, \mathrm{SO}_{4}{ }^{2-}$, and $\mathrm{PO}_{4}{ }^{3-}$
d. $\mathrm{OH}^{-}, \mathrm{SO}_{4}{ }^{2-}$, and $\mathrm{HPO}_{4}{ }^{2-}$
e. $\mathrm{H}_{2} \mathrm{~F}^{+}, \mathrm{H}_{2} \mathrm{SO}_{4}$, and $\mathrm{H}_{3} \mathrm{PO}_{4}$

Amphiprotic

- Substance which can act like an acid or a base.
$\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$
Acid Base conj. Conj.
acid base
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
Base
acid
conj.
Conj.
acid base

AP Question

Each list contains at least one species that could illustrate amphoteric behavior Except:
a. $\mathrm{HNO}_{3}, \mathrm{HCl}, \mathrm{HS}^{-}$
b. $\mathrm{CO}_{3}{ }^{2}, \mathrm{Br}, \mathrm{NH}_{4}{ }^{+}$
c. $\mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}{ }^{-}, \mathrm{NH}_{3}$
d. $\mathrm{H}_{2} \mathrm{PO}_{4}, \mathrm{NH}_{2}, \mathrm{ClO}_{3}^{-}$
e. $\mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{Al}(\mathrm{OH})_{3}, \mathrm{Zn}(\mathrm{OH})_{2}$

How many protons can an acid donate?

- Polyprotic
- Diprotic
- Monoprotic
- These terms describe the number of protons that can be donated.

AP Question

Which of the following is the best description of the changes that occur in each molecule of $\mathrm{H}_{3} \mathrm{PO}_{4}$ when $\mathrm{H}_{3} \mathrm{PO}_{4}$ is neutralized in water solution to form $\mathrm{PO}_{4}{ }^{3-}$
a. Three electrons are accepted
b. Three protons are transferred
c. The oxidation number of phosphorus decreases by three units.
d. Three protons are transferred and three electrons are accepted.
e. Three protons are transferred and the oxidation number of phosphorus decreases by three units.

AP Question

Which is a polyprotic acid in water?
-I. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

- II. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
-III. $\mathrm{H}_{3} \mathrm{AsO}_{4}$
-a. I only d. I and II only
-b. III only e. I, II, and III
- c. II and III only

Common Acid Base Conjugates

- Ammonia: NH_{3}
- Ammonium: NH_{4}^{+}
- This is a common acid/base pair. complete the following reaction.
- NH_{3} + strong acid $\rightarrow \mathrm{NH}_{4}{ }^{+}$
- $\mathrm{NH}_{4}{ }^{+}+$Strong base $\rightarrow \mathrm{NH}_{3}$

